SUNPOWER®

Synthesis of multi-year PV production data using generative adversarial networks

Gregory M. Kimball, Camille M. Pauchet, Rasoul Ghadami, Alberto Fonts Zaragoza

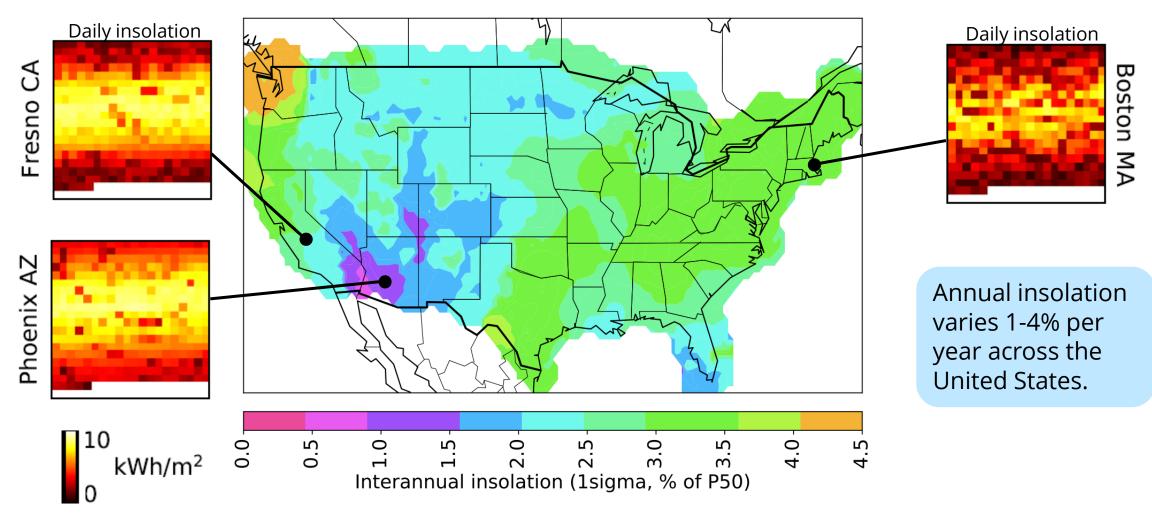
SunPower Corporation, Richmond, CA 94804, USA

2021-06-21

Synthesis of multi-year PV production data using generative adversarial networks

- Insolation variability in the United States
- Synthesis of PV production data
 - Rule-based methods
 - Generative adversarial networks
- Evaluating generated data
 - Insolation statistics
 - Demand charge management

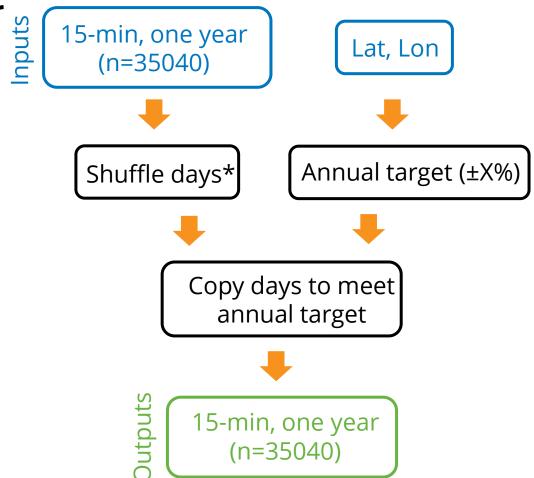
Insolation variability in the United States



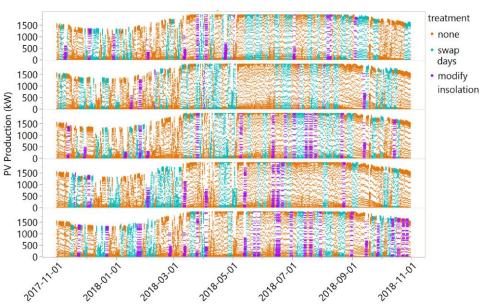
Rule-based data synthesis

Rule-based method "V2"

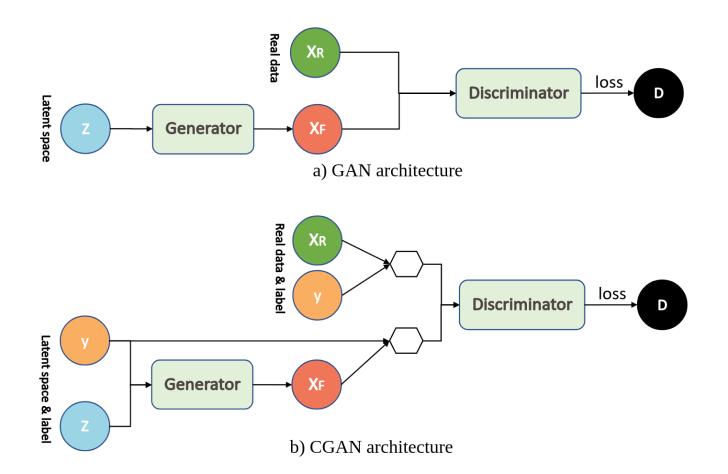
* "V1" method skips the step "Shuffle days"



Methods based on shuffling and copying days yield reasonable synthetic data.



Generative adversarial network, pt1



I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial networks," 2014. Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, "Using GANs for Sharing Networked Time Series Data: Challenges, Initial Promise, and Open Questions," Proceedings of the ACM Internet Measurement Conference, pp. 464–483, Oct. 2020. arXiv: 1909.13403. Image credit: https://medium.com/@ma.bagheri/a-tutorial-on-conditional-generative-adversarial-nets-keras-implementation-694dcafa6282

GANs are a flexible design pattern for generating diverse sets of one-year PV production data.

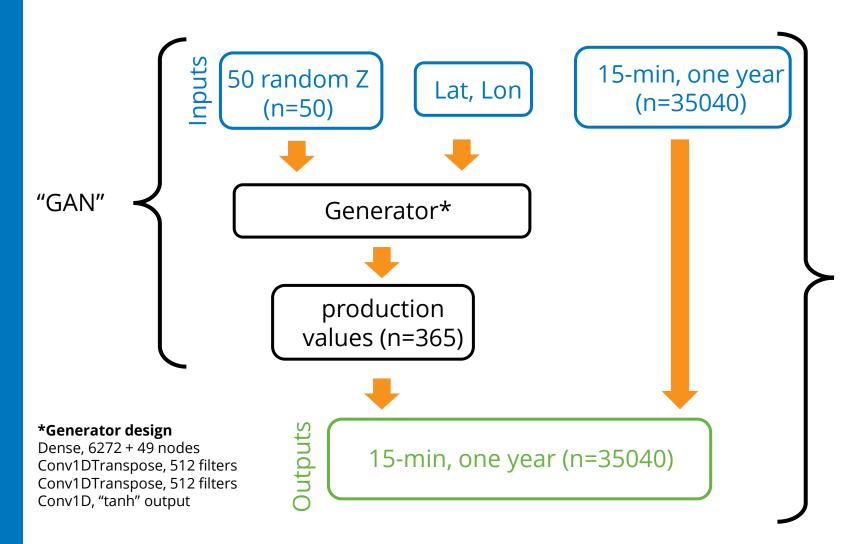
Reference labels

X_R: Real production dataX_F: Fake production data

Z: random values

y: site location

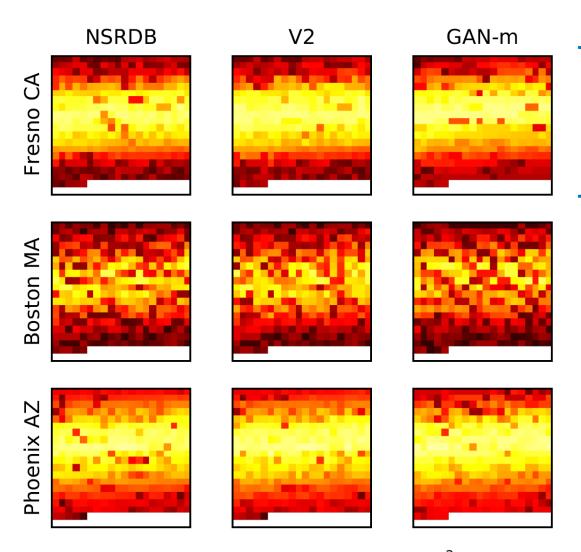
Generative adversarial network, pt 2



"GAN" model has a daily output (n=365) and "GAN-m" has a 15-min output (n=35040) after matching days in the reference data set.

"GAN-m"

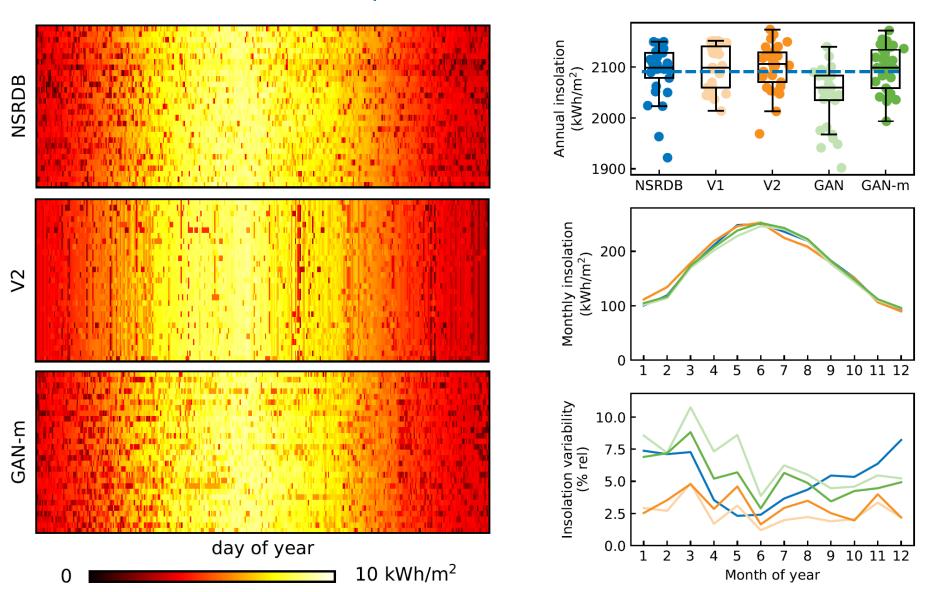
Synthetic insolation data



One year of daily insolation data (n=365) shown as 20x20 image

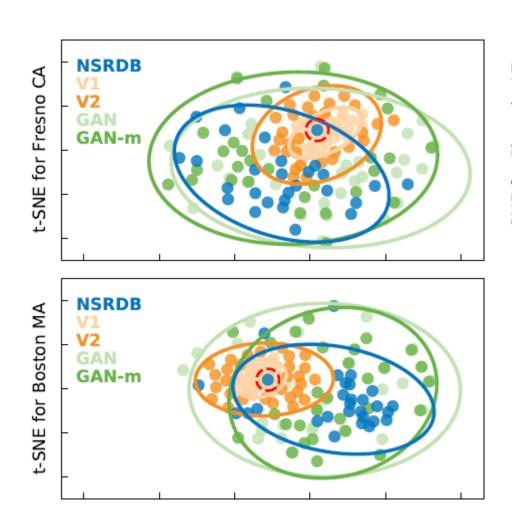
By inspection, rule-based and machine learning models generate reasonable insolation data

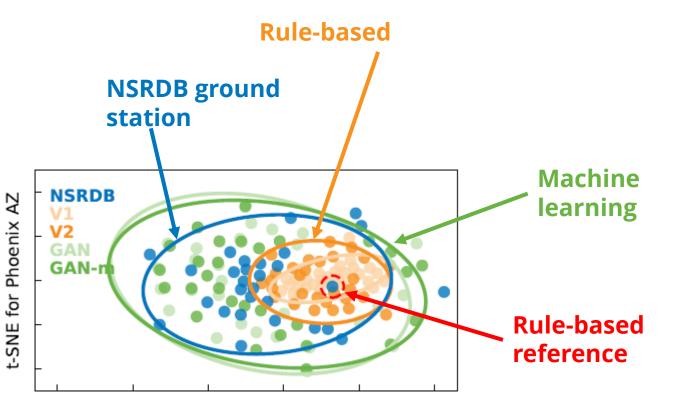
Validation example: Phoenix AZ



Annual and monthly insolation statistics show good correspondence over the 29-year analysis period.

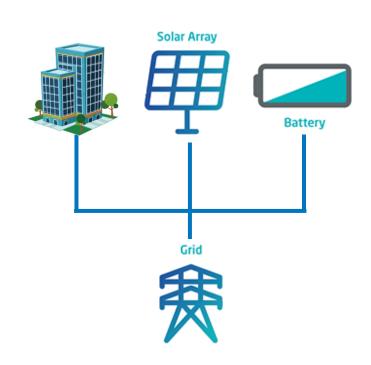
Clustering analysis

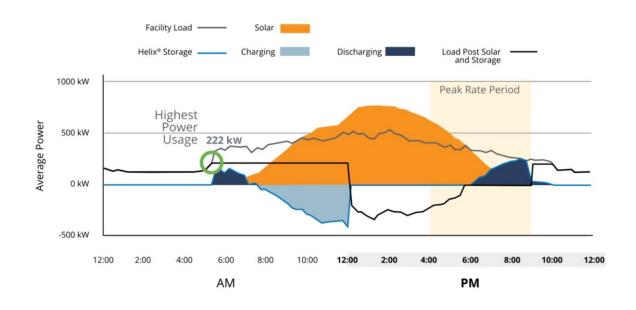




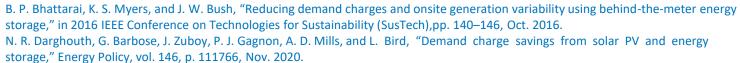
t-Distributed Neighbor Embedding (t-SNE) shows lower diversity for rule-based methods, and higher diversity for machine learning methods.

Demand charge management analysis



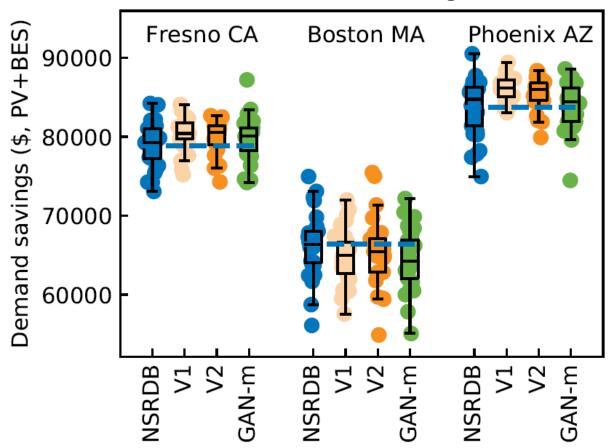


Solar + Storage systems reduce retail demand charges by predicting PV production and optimizing Battery dispatch.



Demand charge savings by data source

Impact of PV production variability on demand savings



Both rule-based and machine learning models of PV production generate demand charge savings results consistent with ground-station data.

Summary

Data synthesis example

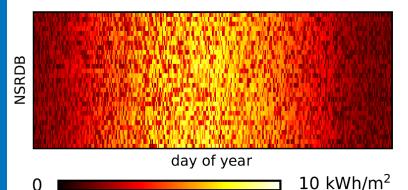
Inputs:

15-min irradiance data for 1974 Boston MA (42.32, -71.17)

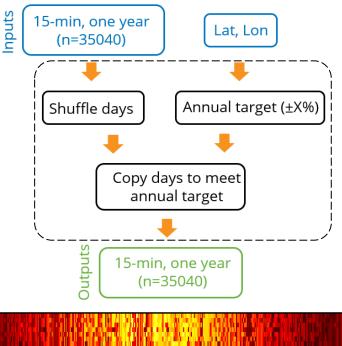
Outputs:

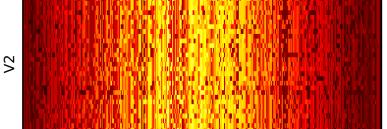
X variants of 15-min irradiance data

Reference (NSRDB, 1961-1990)

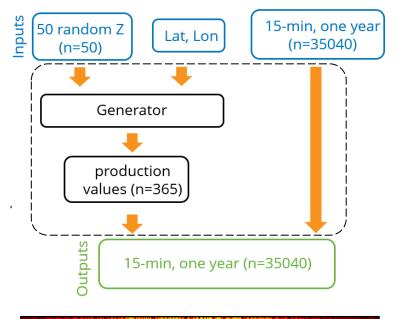


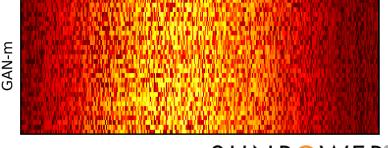
Rule-based method (V2)





Machine learning method (GAN-m)





SUNPOWER®

Thank You

CHANGING THE WAY OUR WORLD IS POWERED