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Abstract—Maulti-year forecasts of PV production are important
for economic assessment of behind-the-meter PV+BES (photo-
voltaic plus battery energy storage) systems. Historical solar
resource data is available for many locations in the United
States, but these data are limited and must be converted from
solar resource to PV production data before they can be used
in BES control simulations. We propose both rule-based and
generative adversarial network methods for synthesizing multi-
year PV production forecasts. These methods use reference PV
production and latitude-longitude inputs to generate hundreds
of PV production scenarios which enable detailed simulation of
behind-the-meter demand charge management.

Index Terms—solar resource variability, energy storage, de-
mand charge management, generative adversarial networks

I. INTRODUCTION

Variability in solar resource has an important influence
on the economics of behind-the-meter PV+BES (photovoltaic
plus battery energy storage) systems. Many large retail elec-
tricity customers pay demand charges based on their peak
monthly electricity consumption, and PV+BES systems work
to reduce peak electricity consumption and lower monthly
demand charges [1]. PV production offsets the gross load and
supports solar-only charging of the BES, leading to an impact
of solar resource variability on customer savings. Monte Carlo
simulations of behind-the-meter PV+BES demand savings take
advantage of synthetic PV production data to explore hundreds
of upside and downside scenarios.

Satellite-based insolation data is available from 1998 on-
ward in the United States [2], but on an annual basis this data
only includes a few examples of upside and downside cases.
Previous studies using historical solar resource data have been
limited to observed scenarios rather than the wider set of likely
scenarios accessible using generative methods [3]. Several
studies have generated maps of interannual variability in solar
resource [4]-[6] which provide starting point for studying
variability in PV production. Although many PV production
forecasting methods focus on day-ahead or month-ahead time
horizons [7], PV+BES systems that are financed over 10-20
year terms require assessment over longer time horizons.

Rule-based algorithms make a good starting point for gener-
ating variants based on input data and can be tailored to study
the different types of variability. Recent advances in generative
adversarial networks (GANs) have been shown to accurately
produce new samples with high diversity and complexity for
many types of time series data [8]-[10]. In this study we
propose both rule-based and generative adversarial network
methods for synthesizing multi-year PV production forecasts

(Fig. 1) and analyze the resulting data using statistical ap-
proaches as well as demand charge management simulations.

II. EXPERIMENTAL

A. Data sources

NSRDB, the National Solar Radiation Database, is a public
data source for hourly global horizontal irradiance (GHI)
data across the United States from 1962 to present. In the
continental United States, the WBAN data set includes 239
sites from 1962 to 1990 and the USAF data set includes 1020
sites from 1991 to 2005. Combined this data set gives us 19690
site-years of hourly irradiance data. In this work we developed
generators for multi-year forecasting based on a reference
one year 15-min data file. The algorithms can generate either
GHI or PV production data depending on the reference time
series data provided. The primary application is generating PV
production data that reflects the solar resource variability for
locations across the United States.
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Fig. 1. Images showing daily insolation for one year from three locations
and three sources, where NSRDB refers to ground station measured data, V2
refers to a data from rule-based algorithm, and GAN-m refers to data from a
generator trained in an adversarial network. The images contain 20x20 pixels
with each pixel representing a daily insolation value.



B. Rule-based generators

The rule-based generators receive one year of 15-min PV
production data plus latitude-longitude as input and generate a
new variant of one year 15-min PV production data as output.
The method V1’ modifies the input PV production data to
meet a higher or lower annual production target. First, the
method selects an annual target based on regional normal
distributions of insolation and project latitude-longitude [5],
[6]. Then the method modifies the 15-min PV production
interval data iteratively until the target is achieved. For each
iteration the highest (lowest) production days are copied over
the lowest (highest) production days within random 14-day
intervals until the annual sum reaches the target. The method
’V2’ adds an additional step to reorder portions of the data
before running the target-searching step of V1. For method
V2 this additional step modifies the PV production data by
applying 30 operations as follows: select three days in a
random 14-day window and swap them with another three
days.

C. Generators from adversarial networks

The methods "GAN’ and 'GAN-m’ use a generator model
trained as part of a generative adversarial network. The *GAN’
method combines an array of random numbers conditioned on
latitude-longitude as input and generates 365 normalized daily
production values as output. The raw 365-day output of the
generator is then de-normalized based on the highest daily
sum in the reference data set. The 'GAN-m’ method uses the
output of the "GAN’ method and further modifies the data by
matching each daily production value to the day with closest
production within +10 days in a reference data set. The ’"GAN’
method only provides daily interval data, while the ’"GAN-m’
method provides both daily and 15-min interval data.

The generative adversarial network consists of a discrimi-
nator model that is trained to determine whether input data is
from a real or synthetic data source, and a generator model that
is trained to generate data that the discriminator will mark as
real. The generator and discriminator models use a conditioned
GAN (cGAN) design where the input data are conditioned
by latitude-longitude inputs. The discriminator receives 365
daily production values conditioned on latitude-longitude and
is trained to output 1 for real and O for synthetic data. The
generator receives 50 random-normal values conditioned on
latitude-longitude and outputs 365 daily production values.
The random input values represent a point in the “latent” space
of possible output patterns.

The discriminator consists of two 1D convolutional neural
network layers with a fully-connected layer to a single sigmoid
output. The generator consists of two 1D convolutional trans-
pose layers with a 1D convolutional layer that forms the 365-
value output. The training process used normalized NSRDB
GHI data as input, applying +4-day roll to the data for each
epoch. The latitude and longitude data were augmented with
a £1.2 degree random-uniform jitter. The training showed
unstable behavior for the first 300-400 epochs, followed by

| 0
I I\IH I'|J IH‘M ‘m

NSRDB

’ n i am ™ I‘ |IIII\ IIHH”I

IIT *IIIII :

GAN

IIHIl II I“ i1 ‘I‘ ‘“‘:‘IIII

wp ) T i 0 Ill" it
\ " IIH R T ohm )
I I lllll'l ! L n ‘IT‘II " I
IlIlIIH " i il 1
i 1 m U [

GAN-mM

1
IR | ‘ 1
iR mo 1 Jul'd
s i R | n s

day of year

0 ] 10 kWh/m?

Fig. 2. Images showing 29 years of daily insolation data from Phoenix AZ.
NSRDB shows ground station measured data, V1 shows data from a generator
targeting annual insolation, V2 shows data from a generator that reorders parts
of the data and then targets a new annual insolation value, GAN shows the
output of a generator trained in an adversarial network, and GAN-m shows
the GAN generator output matched to the nearest 10 days of a reference
year.



stabilization around 80-90% accuracy for real and synthetic
samples, and training was terminated at 3000 epochs.

D. Model validation

Figure 2 shows 29 years of measured daily insolation data
from NSRDB ground stations, as well as 29 examples of
generated data by the V1’ and V2’ rule-based models and
the ’"GAN’ and ’GAN-m’ machine learning models. For each
location, the generators were run using GHI data from the
NSRDB median annual insolation year. In this mode the
generators produce GHI data rather than PV production data.

For each location, t-Distributed Neighbor Embedding (t-
SNE) [11] was applied to the daily insolation data from
the 5 data sources. The embedding was performed with 2
components to facilitate visualization of clustering between the
measured and generated data. Two-sigma confidence ellipses
were also computed as a qualitative measure of diversity for
each data source.

E. Demand savings simulations

Multi-year PV production data was also used as input
for demand charge management simulations of a behind-the-
meter PV+BES system. The simulated site was a commercial
location in Pacific Gas & Electric territory using a tariff
based on PG&E E19 Secondary Option R. For the validation
exercise, the simulations used the same gross load profile,
incorporated static and dynamic BES losses, and optimized
the BES dispatch commands (Fig. 5). The demand savings
simulation upscales the input gross load and PV production
data from 15-min time series data to 2-sec interval data using
a Markov chain method. The 2-sec data is used as input
to a realtime economic dispatch optimizer which provides a
sequence of BES dispatch commands while complying with
constraints to charge from PV production and limit discharge
to the gross load. The gross load, PV production and BES
dispatch data is combined to compute the net load for the
customer. Demand savings from PV+BES is defined as the
difference between the demand charges for the gross load and
the demand charges for the net load, and is aggregated over
12 billing cycles making up one year of operations.

For validating the data from each data source, we used in-
solation data as inputs to the methods, and processed rescaled
output data as PV production. Even though there are different
tariff constraints and typical load profiles in the three locations,
we chose to only adjust the PV production by location to focus
on the impact of solar resource variability on demand savings.
Each demand charge management simulation provided a single
PV+BES demand savings value for each year of 15-min PV
production data.

III. RESULTS

Figure 3 shows several statistical metrics used to compare
measured versus generated insolation. The top pane shows
annual insolation data from 29 years for 5 data sources for
Phoenix AZ, and shows a good matches between NSRDB
and the rule-based models (V1, V2). The V1 and V2 models
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Fig. 3. Solar insolation statistics from measured and generated data for

Phoenix AZ. The top pane shows the distribution of annual insolation values
for each data source. The middle pane shows the average monthly insolation
for each data source. The bottom pane shows the standard deviation of
monthly insolation for each data source.

target annual insolation values from a normal distribution
of NSRDB sites within 100 km of the site location, so
their correspondence with NSRDB is a key feature of the
algorithm. The *GAN’ model output shows a median annual
insolation value about 2.3% lower than the NSRDB median,
due to a greater incidence of heavy clouds in the generated
data. After applying the matching correction, the *GAN-m’
method shows an median annual insolation consistent with
the NSRDB median. The middle pane of Fig. 3 shows mean
monthly insolation values for the 5 data sources, showing that
correspondence with NSRDB is preserved even as monthly in-
solation values change seasonally from 100 to 250 kWh/m2/yr.
The bottom pane of Fig. 3 shows the standard deviation
across 29 samples of monthly insolation values. For standard
deviation in monthly insolation, the rule-based models V1 and
V2 show lower variability than the NSRDB and GAN-based
models.
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Fig. 4. Analysis of several measured and generated data sources based on
the t-Distributed Neighbor Embedding (t-SNE) method for 3 locations and
29 samples per source. Each point represents 365 daily insolation values and
the ellipses show the covariance confidence at 20. The red circle denotes the
NSRDB median insolation data point used for the V1 and V2 models.

For each location, t-SNE analysis showed that the generated
data largely overlaps with the measured data (Fig. 4). For
the V1 method the results were tightly clustered around the
median annual insolation year that had been used as reference
data during data generation. The additional modifications of
the V2 method expanded the cluster relative to V1. By
contrast, the ’GAN’ and ’GAN-m’ clusters showed larger
confidence ellipses that expanded beyond the NSRDB cluster
to encompass some additional variability.

The measured and generated data served as PV production
input to PV+BES demand charge management simulations.
Figure 5 shows six days of a demand charge management
simulation, highlighting the daily patterns in state-of-charge
(SoC), BES dispatch and net load. Demand savings analysis
for 29 years of 4 data sources and 3 locations were compiled
to assess the variability provided by each data source. Figure
6 shows that the measured and generated data sources follow
the same trends across the 3 sample locations.
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Fig. 5. Time series data showing the PV production, gross load, BES dispatch,
net load and BES state of charge (SoC) for six days of a one year simulation.

Table I summarizes the results of the basic statistical met-
rics, the t-SNE qualitative analysis, and the demand charge
management simulations.

IV. DISCUSSION

The generator methods in this manuscript synthesize either
GHI or PV production data based on the type of reference
data used. The methods treat days as independent units, so any
time-of-day details in the reference data set will be preserved
in the output data. To facilitate comparison with NSRDB
data, we ran the generator models with GHI data inputs from
the NSRDB median annual insolation year for each location.
Although we treated these GHI outputs as PV production
in the demand savings simulations (Fig. 5), a more rigorous
approach would decompose the GHI data into direct normal
and diffuse horizontal irradiance, transpose to plane-of-array,
combine with appropriate temperature and windspeed data,
and process using a PV power model.

The rule-based methods V1 and V2 showed the expected
distribution of annual and monthly production values with
somewhat lower variability metrics for locations with more
stable daily insolation. For the V1 method, standard deviation
of monthly production was lower than the NSRDB reference
and the t-SNE cluster also showed limited diversity. However,
the V2 method improved the variability metrics relative to
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Fig. 6. Demand charge management simulation results showing PV+BES
demand savings for a range of PV production scenarios based on 4 data
sources and 3 locations. The horizontal blue line shows the mean demand
savings for simulations using PV production based on the NSRDB reference.
V1 and increased the standard deviation of demand savings.
Although we found an improvement in the sample diversity
from V1 to V2, further increasing the swap operations did not
bring variability metrics closer to the NSRDB reference. The
V2 method has the benefit of being easily audited, capable of
producing realistic variability in PV production, and good for
generating a reasonable distribution of demand savings.

The *GAN-m’ method generally showed accurate annual
and monthly production values with some differences caused
by low geographic detail in the model. Although it did not im-
pact the demand savings distribution, the 3.8% higher annual
insolation for Fresno from ’GAN-m’ was caused by greater
incidence of clear periods during winter months that is more
characteristic of desert southwest locations. The matching
process from methods "GAN’ to "GAN-m’ acted as a rolling
min-max filter on the raw outputs and improved the corre-
spondence with annual and monthly sums versus measured
data. The t-SNE analysis showed diversity and variety in the
outputs as high or greater than the NSRDB reference. When
used in demand charge management simulations, the "GAN-m’
method generated the expected distribution of demand savings.

Initial designs of the GAN model were conditioned on
365 daily production values, but failed by mode collapse and
decreasing weights for latent space inputs. Subsequent designs
of the GAN model were conditioned on latitude-longitude and
showed stable convergence with good diversity in outputs.
Models based on 1-D convolutional layers outperformed mod-
els based on dense layers, with dense layers resulting in 3-day
autocorrelation values lower than the NSRDB reference.

Demand savings based on generated data showed similar
median values within each location, differentiating between
Phoenix with the highest savings, Boston the lowest, and
Fresno intermediate. This trend reflects generally that higher
PV production leads to higher demand savings, all else being
equal. The V2 method showed demand savings standard
deviation within 2% absolute of the NSRDB reference, and the

TABLE I
METRICS FOR MEASURED AND GENERATED DATA*

Metric Location NSRDB Vi V2 GAN GAN-m
Fresno 1884 1887 1887 1936 1957
éy'r' Boston 1429 1421 1422 1372 1416
Phoenix 2090 2099 2100 2046 2096
Fresno 7.5 24 39 7.4 5.9
TGmo Boston 7.1 33 52 6.8 6.4
Phoenix 5.2 2.5 3.1 6.5 54
Fresno 657 75 290 1123 1173
AtSNE Boston 507 48 237 1110 833
Phoenix 811 119 276 1235 1227
Fresno 3.7 2.5 2.5 - 34
Osav Boston 6.2 52 6.5 - 59
Phoenix 4.3 1.7 2.3 - 5.1

*where Gy, is average annual insolation in (kWh/m?), 5g,,,
is average monthly standard deviation of daily insolation in relative
percent, Ay s g is the area of the 20 covariance confidence ellipse after
2-dimensional t-SNE, and o4+ is the standard deviation of simulated
PV+BES demand savings in relative percent.

’GAN-m’ method showed demand savings standard deviation
within 0.8% absolute of the NSRDB reference.

V. CONCLUSION

Multi-year forecasts of PV production are an important
component of economic assessment for behind-the-meter
PV+BES (photovoltaics plus battery energy storage) systems.
Using a reference PV production time series and latitude-
longitude, we present both rule-based and generative adver-
sarial network (GAN) methods to generate PV production
variants covering the range of likely scenarios over a 10-
20 year planning horizon. The method development was
based on NSRDB global horizontal insolation data for sites
across the continental United States. The resulting diversity,
variability, and distribution of demand savings from synthetic
PV production data matches the expected characteristics of
historical weather patterns.
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